API / Belt / Map

You are currently looking at the < v8.2.0 docs (Reason v3.6 syntax edition). You can find the latest API docs here.

(These docs cover all versions between v3 to v8 and are equivalent to the old BuckleScript docs before the rebrand)

Map

The top level provides generic immutable map operations.

It also has three specialized inner modules Belt.Map.Int, Belt.Map.String and Belt.Map.Dict.

t

type t('key, 'value, 'identity);

'key is the field type

'value is the element type

'identity the identity of the collection

id

type id('key, 'id) = Belt_Id.comparable('key, 'id);

The identity needed for making an empty map.

make

let make: (~id: id('k, 'id)) => t('k, 'v, 'id);

make(~id) creates a new map by taking in the comparator.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); let m = Belt.Map.make(~id=(module IntCmp)); Belt.Map.set(m, 0, "a");

isEmpty

let isEmpty: t('a, 'b, 'c) => bool;

isEmpty(m) checks whether a map m is empty.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.isEmpty(Belt.Map.fromArray([|(1, "1")|], ~id=(module IntCmp))) == false;

has

let has: (t('k, 'v, 'id), 'k) => bool;

has(m, k) checks whether m has the key k.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.has(Belt.Map.fromArray([|(1, "1")|], ~id=(module IntCmp)), 1) == true;

cmpU

let cmpU: (t('k, 'v, 'id), t('k, 'v, 'id), [@bs] (('v, 'v) => int)) => int;

cmp

let cmp: (t('k, 'v, 'id), t('k, 'v, 'id), ('v, 'v) => int) => int;

cmp(m0, m1, vcmp);

Total ordering of map given total ordering of value function.

It will compare size first and each element following the order one by one.

eq

let eqU: (t('k, 'v, 'id), t('k, 'v, 'id), [@bs] (('v, 'v) => bool)) => bool;

eq(m1, m2, veq) tests whether the maps m1 and m2 are equal, that is, contain equal keys and associate them with equal data. veq is the equality predicate used to compare the data associated with the keys.

eq

let eq: (t('k, 'v, 'id), t('k, 'v, 'id), ('v, 'v) => bool) => bool;

findFirstByU

let findFirstByU: (t('k, 'v, 'id), [@bs] (('k, 'v) => bool)) => option(('k, 'v));

findFirstBy

let findFirstBy: (t('k, 'v, 'id), ('k, 'v) => bool) => option(('k, 'v));

findFirstBy(m, p) uses function f to find the first key value pair to match predicate p.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); let s0 = Belt.Map.fromArray(~id=(module IntCmp), [|(4, "4"), (1, "1"), (2, "2"), (3, "")|]); Belt.Map.findFirstBy(s0, (k, v) => k == 4); /* (4, "4") */

forEachU

let forEachU: (t('k, 'v, 'id), [@bs] (('k, 'v) => unit)) => unit;

forEach

let forEach: (t('k, 'v, 'id), ('k, 'v) => unit) => unit;

forEach(m, f) applies f to all bindings in map m. f receives the 'k as first argument, and the associated value as second argument. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); let s0 = Belt.Map.fromArray(~id=(module IntCmp), [|(4, "4"), (1, "1"), (2, "2"), (3, "")|]); let acc = ref([]); Belt.Map.forEach(s0, (k, v) => acc := [(k, v), ...acc^]); acc^ == [(4, "4"), (3, "3"), (2, "2"), (1, "1")];

reduceU

let reduceU: (t('k, 'v, 'id), 'acc, [@bs] (('acc, 'k, 'v) => 'acc)) => 'acc;

reduce

let reduce: (t('k, 'v, 'id), 'acc, ('acc, 'k, 'v) => 'acc) => 'acc;

reduce(m, a, f) computes (f(kN, dN) ... (f(k1, d1, a))...), where k1 ... kN are the keys of all bindings in m (in increasing order), and d1 ... dN are the associated data.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); let s0 = Belt.Map.fromArray(~id=(module IntCmp), [|(4, "4"), (1, "1"), (2, "2"), (3, "3")|]); Belt.Map.reduce(s0, [], (acc, k, v) => [(k, v), ...acc]); /* [(4, "4"), (3, "3"), (2, "2"), (1, "1"), 0] */

everyU

let everyU: (t('k, 'v, 'id), [@bs] (('k, 'v) => bool)) => bool;

every

let every: (t('k, 'v, 'id), ('k, 'v) => bool) => bool;

every(m, p) checks if all the bindings of the map satisfy the predicate p. Order unspecified

someU

let someU: (t('k, 'v, 'id), [@bs] (('k, 'v) => bool)) => bool;

some

let some: (t('k, 'v, 'id), ('k, 'v) => bool) => bool;

some(m, p) checks if at least one binding of the map satisfy the predicate p. Order unspecified

size

let size: t('k, 'v, 'id) => int;

size(s)

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.size(Belt.Map.fromArray([|(2, "2"), (2, "1"), (3, "3")|], ~id=(module IntCmp))) == 2;

toArray

let toArray: t('k, 'v, 'id) => array(('k, 'v));

toArray(s)

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.toArray(Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp))) == [|(1, "1"), (2, "2"), (3, "3")|];

toList

let toList: t('k, 'v, 'id) => list(('k, 'v));

In increasing order.

See Belt.Map.toArray

fromArray

let fromArray: (array(('k, 'v)), ~id: id('k, 'id)) => t('k, 'v, 'id);

fromArray(kvs, ~id);

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.toArray(Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp))) == [|(1, "1"), (2, "2"), (3, "3")|];

keysToArray

let keysToArray: t('k, 'v, 'id) => array('k);

keysToArray(s);

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.keysToArray(Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp))) == [|1, 2, 3|];

valuesToArray

let valuesToArray: t('k, 'v, 'id) => array('v);

valuesToArray(s);

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.valuesToArray(Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp))) == [|"1", "2", "3"|];

minKey

let minKey: t('k, 'a, 'b) => option('k);

minKey(s) returns the minimum key, None if not exist.

minKeyUndefined

let minKeyUndefined: t('k, 'a, 'b) => Js.undefined('k);

See Belt.Map.minKey

maxKey

let maxKey: t('k, 'a, 'b) => option('k);

maxKey(s) returns the maximum key, None if not exist.

maxKeyUndefined

let maxKeyUndefined: t('k, 'a, 'b) => Js.undefined('k);

See Belt.Map.maxKey

minimum

let minimum: t('k, 'v, 'a) => option(('k, 'v));

minimum(s) returns the minimum key value pair, None if not exist

minUndefined

let minUndefined: t('k, 'v, 'a) => Js.undefined(('k, 'v));

See Belt.Map.minimum

maximum

let maximum: t('k, 'v, 'a) => option(('k, 'v));

maximum(s) returns the maximum key value pair, None if not exist.

maxUndefined

let maxUndefined: t('k, 'v, 'a) => Js.undefined(('k, 'v));

See Belt.Map.maximum

get

let get: (t('k, 'v, 'id), 'k) => option('v);

get(s, k)

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); Belt.Map.get(Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp)), 2) == Some("2"); Belt.Map.get(Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp)), 2) == None;

getUndefined

let getUndefined: (t('k, 'v, 'id), 'k) => Js.undefined('v);

See Belt.Map.get

Returns undefined when not found

getWithDefault

let getWithDefault: (t('k, 'v, 'id), 'k, 'v) => 'v;

getWithDefault(s, k, default)

See Belt.Map.get

Returns default when k is not found.

getExn

let getExn: (t('k, 'v, 'id), 'k) => 'v;

getExn(s, k)

See Belt.Map.getExn

raise when k not exist

remove

let remove: (t('k, 'v, 'id), 'k) => t('k, 'v, 'id);

remove(m, x) when x is not in m, m is returned reference unchanged.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); let s0 = Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp)); let s1 = Belt.Map.remove(s0, 1); let s2 = Belt.Map.remove(s1, 1); s1 === s2; Belt.Map.keysToArray(s1) == [|2, 3|];

removeMany

let removeMany: (t('k, 'v, 'id), array('k)) => t('k, 'v, 'id);

removeMany(s, xs)

Removing each of xs to s, note unlike Belt.Map.remove, the reference of return value might be changed even if none in xs exists s.

set

let set: (t('k, 'v, 'id), 'k, 'v) => t('k, 'v, 'id);

set(m, x, y) returns a map containing the same bindings as m, with a new binding of x to y. If x was already bound in m, its previous binding disappears.

RE
module IntCmp = Belt.Id.MakeComparable({ type t = int; let cmp = (a, b) => Pervasives.compare(a, b); }); let s0 = Belt.Map.fromArray([|(2, "2"), (1, "1"), (3, "3")|], ~id=(module IntCmp)); let s1 = Belt.Map.set(s0, 2, "3"); Belt.Map.valuesToArray(s1) == [|"1", "3", "3"|];

updateU

let updateU: (t('k, 'v, 'id), 'k, [@bs] (option('v) => option('v))) => t('k, 'v, 'id);

update

let update: (t('k, 'v, 'id), 'k, option('v) => option('v)) => t('k, 'v, 'id);

update(m, x, f) returns a map containing the same bindings as m, except for the binding of x. Depending on the value of y where y is f(get(x, m)), the binding of x is added, removed or updated. If y is None, the binding is removed if it exists; otherwise, if y is Some(z) then x is associated to z in the resulting map.

mergeMany

let mergeMany: (t('k, 'v, 'id), array(('k, 'v))) => t('k, 'v, 'id);

mergeMany(s, xs)

Adding each of xs to s, note unlike add, the reference of return value might be changed even if all values in xs exist s.

mergeU

let mergeU: (t('k, 'v, 'id), t('k, 'v2, 'id), [@bs] (('k, option('v), option('v2)) => option('v3))) => t('k, 'v3, 'id);

merge

let merge: (t('k, 'v, 'id), t('k, 'v2, 'id), ('k, option('v), option('v2)) => option('v3)) => t('k, 'v3, 'id);

merge(m1, m2, f) computes a map whose keys is a subset of keys of m1 and of m2. The presence of each such binding, and the corresponding value, is determined with the function f.

keepU

let keepU: (t('k, 'v, 'id), [@bs] (('k, 'v) => bool)) => t('k, 'v, 'id);

keep

let keep: (t('k, 'v, 'id), ('k, 'v) => bool) => t('k, 'v, 'id);

keep(m, p) returns the map with all the bindings in m that satisfy predicate p.

partitionU

let partitionU: (t('k, 'v, 'id), [@bs] (('k, 'v) => bool)) => (t('k, 'v, 'id), t('k, 'v, 'id));

partition

let partition: (t('k, 'v, 'id), ('k, 'v) => bool) => (t('k, 'v, 'id), t('k, 'v, 'id));

partition(m, p) returns a pair of maps (m1, m2), where m1 contains all the bindings of s that satisfy the predicate p, and m2 is the map with all the bindings of s that do not satisfy p.

split

let split: (t('k, 'v, 'id), 'k) => ((t('k, 'v, 'id), t('k, 'v, 'id)), option('v));

split(x, m) returns a tuple (l, r), data, where l is the map with all the bindings of m whose 'k is strictly less than x; r is the map with all the bindings of m whose 'k is strictly greater than x; data is None if m contains no binding for x, or Some(v) if m binds v to x.

mapU

let mapU: (t('k, 'v, 'id), [@bs] ('v => 'v2)) => t('k, 'v2, 'id);

map

let map: (t('k, 'v, 'id), 'v => 'v2) => t('k, 'v2, 'id);

map(m, f) returns a map with same domain asm, where the associated valueaof all bindings ofmhas been replaced by the result of the application offtoa. The bindings are passed tof` in increasing order with respect to the ordering over the type of the keys.

mapWithKeyU

let mapWithKeyU: (t('k, 'v, 'id), [@bs] (('k, 'v) => 'v2)) => t('k, 'v2, 'id);

mapWithKey

let mapWithKey: (t('k, 'v, 'id), ('k, 'v) => 'v2) => t('k, 'v2, 'id);

mapWithKey(m, f)

The same as Belt.Map.map except that f is supplied with one more argument: the key.

getData

let getData: t('k, 'v, 'id) => Belt_MapDict.t('k, 'v, 'id);

getData(s0)

Advanced usage only

Returns the raw data (detached from comparator), but its type is still manifested, so that user can pass identity directly without boxing.

getId

let getId: t('k, 'v, 'id) => id('k, 'id);

Advanced usage only

Returns the identity of s0.

packIdData

let packIdData: (~id: id('k, 'id), ~data: Belt_MapDict.t('k, 'v, 'id)) => t('k, 'v, 'id);

packIdData(~id, ~data)

Advanced usage only

Returns the packed collection.